当前位置:首页 > 企业动态 > 行业动态

国内人工智能行业全梳理 | 全面解析AI产业链、关键力量和发展趋势

时间:2016-11-25来源:哈工大东亚电子

在中国,关于「人工智能」的研究和探讨在 70 年代末被解禁后又不适时地与「特异功能」联系在一起而停滞不前,直到 80 年代初期随着技术和思想的不断进步才取得实质性进步。

  而今,全球共有近千家人工智能公司遍及 62 个国家的十余个产业,国内涉及人工智能领域的公司也早已破百。

  除了「机器学习」、「模式识别」和「神经网络」这些晦涩的词汇和各种层出不穷的借势营销,这个看似离我们越来越近的市场却在「互联网玄学」的外衣下显得愈发迷雾重重。

  那么,关于人工智能,你究竟了解多少?在下一个产业浪潮到来之前,我们到底又应该关注什么?

  一、国内人工智能产业链解构

  「基础技术」、「人工智能技术」和「人工智能应用」构成了人工智能产业链的三个核心环节,我们将主要从这三个方面对国内人工智能产业进行梳理,并对其中的「人工智能应用」进行重点解构。

  1基础技术提供平台

  人工智能的基础技术主要依赖于大数据管理和云计算技术,经过近几年的发展,国内大数据管理和云计算技术已从一个崭新的领域逐步转变为大众化服务的基础平台。而依据服务性质的不同,这些平台主要集中于三个服务层面,即「基础设施即服务(IaaS)」、「 平台即服务(PaaS)」和「软件即服务(SaaS)」。

  基础技术提供平台为人工智能技术的实现和人工智能应用的落地提供基础的后台保障,也是一切人工智能技术和应用实现的前提。

  对于许多中小型企业来说,SaaS 是采用先进技术的最好途径,它消除了企业购买、构建和维护基础设施和应用程序的需要;而 IaaS 通过三种不同形态服务的提供(公有云、私有云和混合云)可以更快地开发应用程序和服务,缩短开发和测试周期;作为 SaaS 和 IaaS 中间服务的 PaaS 则为二者的实现提供了云环境中的应用基础设施服务。

  SaaS:提供给客户的服务是运营商运行在云计算基础设施上的应用程序,用户可以在各种设备上通过客户端界面访问,如浏览器。

  PaaS:将软件研发的平台作为一种服务,以 SaaS 的模式提交给用户。

  IaaS:分为公有云、私有云和混合云三种形态,提供给消费者的服务是对所有设施的利用,包括处理器、存储、网络和其它基本的计算资源,用户能够部署和运行任意软件,包括操作系统和应用程序。

  2人工智能技术平台

  与基础技术提供平台不同,人工智能技术平台主要专注于「机器学习」、「模式识别」和「人机交互」三项与人工智能应用密切相关的技术,所涉及的领域包括机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序设计、智能控制、机器人学、语言和图像理解和遗传编程等。

  机器学习:通俗的说就是让机器自己去学习,然后通过学习到的知识来指导进一步的判断。我们用大量的待遇标签的样本数据来让计算机进行运算并设计惩罚函数,通过不断的迭代,机器就学会了怎样进行分类,使得惩罚最小。这些学到的分类规则可以进行预测等活动,具体应用覆盖了从通用人工智能应用到专用人工智能应用的大多数领域,如:计算机视觉、自然语言处理、生物特征识别、证券市场分析和 DNA 测序等。

  模式识别:模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,它偏重于对信号、图像、语音、文字、指纹等非直观数据方面的处理,如语音识别,人脸识别等,通过提取出相关的特征来实现一定的目标。文字识别、语音识别、指纹识别和图像识别等都属于模式识别的场景应用。

  人机交互:人机交互是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。在应用层面,它既包括人与系统的语音交互,也包含了人与机器人实体的物理交互。

  而在国内,人工智能技术平台在应用层面主要聚焦于计算机视觉、语音识别和语言技术处理领域。

  3人工智能应用

  人工智能应用涉及到专用应用和通用应用两个方面,这也是「机器学习」、「模式识别」和「人机交互」这三项人工智能技术的落地实现形式。

  其中,专用领域的应用涵盖了目前国内人工智能应用的大多数应用,包括各领域的人脸和语音识别以及服务型机器人等方面;而通用型则侧重于金融、医疗、智能家居等领域的通用解决方案,目前国内人工智能应用正处于由专业应用向通用应用过度的发展阶段。

  (1)计算机视觉

  在国内计算机视觉领域,动静态图像识别和人脸识别是主要研究方向:

  图像识别,是计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。识别过程包括图像预处理、图像分割、特征提取和判断匹配。

  人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

  

  

       目前,由于动态检测与识别的技术门槛限制,静态图像识别与人脸识别的研究暂时处于领先位置,其中既有腾讯、蚂蚁金服、百度和搜狗这样基于社交、社交、搜索大数据整合的互联网公司,也有三星中国技术研究院、微软亚洲研究院、Intel 中国研究院这类的传统硬件与技术服务商;同时,类似于 Face++ 和 FaceID 这类的新兴技术公司也在各自专业技术和识别准确率上取得了不错的突破。

  而在难度最大的动态视觉检测领域,哈工大东亚电子主要着力点应用公安和检察等行业,在一些常见的应用场景也与人脸识别技术联动使用。

  人脸识别代表企业:哈工大东亚电子、旷视科技、腾讯优图、蚂蚁金服、FaceID、汉王科技、三星中国技术研究院、微软亚洲研究院、中科奥森、深圳科葩、linkface、SenseTime 等。

  动态视觉检测代表企业:哈工大东亚电子 、格灵深瞳、东方网力、Video++等。

  (2)语音/语义识别

  语音识别的关键在于基于大量样本数据的识别处理,因此,国内大多数语音识别技术商都在平台化的方向上发力,希望通过不同平台以及软硬件方面的数据和技术积累不断提高识别准确率。

  

       在通用识别率上,各企业的成绩基本维持在 95% 左右,真正的差异化在于对垂直领域的定制化开发。

  (3)智能机器人

  由于工业发展和智能化生活的需要,目前国内智能机器人行业的研发主要集中于家庭机器人、工业\企业服务和智能助手三个方面。

  

       根据《中国服务机器人市场现状调研与发展前景分析报告(2015-2020年)》中的数据,2014 年,我国服务机器人销售额 45.56 亿元,同比增长 34%;分布地区主要集中在经济较为发达的环渤海(27.3%)及长三角(29.6%)、珠三角地区(32.7%),中部地区(8.9%)和西部地区(1.5%)应用较少。

  其中,工业及企业服务类的机器人研发企业依托政策背景和市场需要处于较为发达的发展阶段,代表性企业包括依托中科院沈阳自动化研究所的新松机器人、聚焦智能医疗领域的博实股份,以及大疆、优爱宝机器人、Slamtec 这类专注工业生产和企业服务的智能机器人公司。

  (4)智能家居

  与家庭机器人不同,智能家居和物联企业的主要着力点在于智能设备和智能中控两个方面。

  


  综合来看,智能家居和物联企业由于市场分类、技术种类和数据积累的不同各自提供着差异化的解决方案。在既定市场中,没有绝对意义上的排斥竞争,各企业之间的合作融合度较强。

  (5)智能医疗

  目前国内智能医疗领域的研究主要集中于医疗机器人、医疗解决方案和生命科学领域。

  


  综合来看,国内人工智能产业链的基础技术链条已经构建成熟,人工智能技术和应用则集中在人脸和图像识别、语音助手、智能生活等专用领域的场景化解决方案上。就趋势来看,未来国内人工智能领域的差异化竞争和突破将主要集中在人工智能相关技术的突破和应用场景升级两个层面。

  未来,随着国内人工智能行业的产业分工和企业竞合日渐明晰,国内的人工智能产业链也将更为明显地分化为以 BAT 为代表的生态平台、以科大讯飞和格灵深瞳为代表的通用技术解决平台以及以出门问问、broadlink 为代表的人工智能专用领域解决方案提供商。